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A B S T R A C T

Air pollution from burning sugarcane is an important environmental issue in Thailand. Knowing the location and
extent of sugarcane plantations would help in formulating effective strategies to reduce burning. High resolution
satellite imagery combined with deep-learning technologies can be effective to map sugarcane with high preci-
sion. However, land cover mapping using high resolution data and computationally intensive deep-learning
networks can be computationally costly. In this study, we used high resolution satellite imagery from Planet
that has been made available to the public through the Norway's International Climate and Forest Initiative
(NICFI). We tested a U-Net deep-learning algorithm with a lightweight MobileNetV2 network as the encoder
branch using the Google Earth Engine computational platform. We trained a model using the RGB channels with
pre-trained network (RGBt), a RGB model with randomly initialized weights (RGBr) and a model with randomly
initialized weights including the NIR channel (RGBN). We found an F1-score of 0.9550, 0.9262 and 0.9297 for the
RGBt, RGBr and RGBN models, respectively. For an independent model evaluation we found F1-scores of 0.9141,
0.8681 and 0.8911. We also found a discrepancy in the recall values reported by the model and those from the
independent validation. We found that lightweight deep-learning models produce satisfactory results while
providing effective means to apply mapping efforts at scale with reduced computational costs. We highlight the
importance of central data repositories with labeled data as pre-trained networks were found to be effective in
improving the accuracy.
1. Introduction

Agricultural and industrial development processes have been a major
driver behind land cover changes in Southeast Asia (FAO, 2020; FAO,
2019; Poortinga et al., 2020). Whereas crop yields have soared over the
last two decades and dramatically improved the food security situation
(Poortinga et al., 2019a), agricultural expansion into territory with high
value in terms of ecology and biodiversity remains a main concern.
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Moreover, agricultural production systems are a large source of green-
house gas emissions due to the use of fertilizer, fossil fuels and biomass
burning (Yuttitham et al., 2011). Biomass burning is also a main source of
hazardous air pollution and associated negative health consequences
(Chantara et al., 2012).

Thailand, like many other countries in Southeast Asia is a major
exporter of a number of agricultural food and industrial products. Main
crop commodities in Thailand include rice, soybean, cassava, and
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sugarcane (Tenneson et al., 2021). In Thailand, agricultural production is
not a main driver for deforestation like other countries in Southeast Asia
(Tenneson et al., 2021). However, agricultural production is a primary
concern for environmental impact including, but not limited to, issues
regarding water (quality and quantity) (Silalertruksa and Gheewala,
2018), soil health (Oechaiyaphum et al., 2020) and air pollution
(Vadrevu et al., 2015). Additionally, the sustainability of the agricultural
production system in relation to human health is a complex interaction
that includes socio-economic, geographical and climatological factors
(Walters et al., 2016). Detailed geographically explicit information is
required to map and understand how those multidimensional compo-
nents interact.

Maps depicting the location, coverage, and growth of specific crop
commodities are critical to understand the drivers behind agricultural
practices and could help formulate strategies to improve sustainability of
agro-ecological practices. Whereas many countries lack accurate and
timely land cover data (Saahet al.), Thailand has a precise archive of
spatially explicit land cover information as well as census data. However,
the hand digitized land cover data provides a single snapshot and does
not represent spatio-temporal dynamics in cropping patterns. The work
of Saah et al. (2020), Potapov et al. (2019) provides a comprehensive
overview of yearly land cover change dynamics for the period
2000–2018 using machine learning, however, their analyses were done
using medium resolution Landsat data and their typology does not
include specific crop commodities. Data with a finer spatio-temporal
resolution would help circumvent current issues in land cover mapping
including persistent cloud cover (Saahet al.) and mixed pixels. Further-
more, deep-learning technologies have demonstrated to improve land
cover mapping efforts (Zhang et al., 2020).

High resolution images from both drones and satellites have limita-
tions on the spatial and temporal coverage, historical archive, cost, and
weather obstructions such as cloud cover or inability to fly due to
inclement weather (Bhandari et al., 2015; Fisher et al., 2018). Histori-
cally, due to the financial overhead from both storage and computational
demands, high resolution satellite imagery for land cover mapping has
been beyond the reach of most organizations. However, recently, high
resolution imagery has been made available to the public through the
Norway's International Climate and Forest Initiative (NICFI), with
Kongsberg Satellite Services (KSAT) and its partners Airbus and Planet.
Moreover, cloud storage and computational frameworks such as Google
Earth Engine have removed barriers with regards to computational and
storage requirements (Gorelick et al., 2017). The recent integration of the
Google Artificial Intelligence (AI) platform with Google Earth Engine
enables scientists to apply deep-learning algorithms to geographic data at
scale. The integration of cloud computing, high resolution satellite im-
agery and deep-learning technologies provides scientists with the tools to
map the Earth's surface with ever increasing precision and revolutionizes
our scientific understanding of the Earth.

Mapping crop commodities using satellite imagery is a well estab-
lished field. There is a large scientific body of literature describing the
use of publicly available data from optical sensors such as Moderate
Resolution Imaging Spectroradiometer (MODIS) [e.g. Friedl et al., 2002],
Landsat [e.g. Khanal et al., 2020; Uddin et al., 2015] and Sentinel-2 [e.g.
Poortinga et al., 2019b; Tiwari et al., 2020] to map a wide variety of land
cover types. Optical remote sensing methods mainly rely on the spectral
signature of the crop type, i.e. the part of the solar spectrum reflected by
the land cover type under investigation. Land cover phenology can add
additional contextual information as some crop types show distinct
temporal patterns in their spectral reflectance. In addition to conven-
tional red, green, and blue channels, publicly funded medium resolution
satellites additionally have multiple bands in the near infrared (NIR) and
shortwave infrared (SWIR) part of the spectrum, which most high reso-
lution imagery lack. Including these NIR and SWIR bands, as well as
derived spectral indices, are often an advantage when using machine
learning approaches. However, the PlanetScope Dove satellite series
utilized for this study, are equipped with spectral bands including Blue
2

(455–515 nm), Green (500–590 nm), Red (590–670 nm), and NIR
(780–860 nm) (Lemajic et al., 2018). The spectral ranges of these bands
are comparatively larger than that of Landsat's complementary bands
(Young et al., 2017). In total, the spectral range of Landsat, with the
additional bands, surpasses the PlanetScope Dove. However,
deep-learning technologies that take into account spatial information
(e.g. convolutions) combined with high resolution data can help over-
come limited collective spectral range compared to that of Landsat.

Traditional methods of land cover mapping include the use of machine
learning approaches such as Vector Quantization (Gray, 1984), Random
forest (Breiman, 2001) and Support Vector Machine (SVM) (Noble, 2006).
Deep-learning technologies such as Deep Neural Networks (DNN), Con-
volutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)
have become increasingly popular in remote sensing. Work of e.g. Hoeser
and Kuenzer (Hoeser and Kuenzer, 2020Hoeser and Kuenzer, 2020),
Kattenborn et al. (2021), Pashaei et al. (2020), Paoletti et al. (2019) pro-
vide comprehensive overviews of recent trends and applications in the
field of Earth observation. The technologies are based on the interdisci-
plinary field of computer vision and are applied on an operational basis in
many scientific disciplines as well as commercially. Large open databases
with imagery (Deng et al., 2009) are available for neural networks which
are known to be much more data demanding than conventional machine
learning approaches. Moreover, a variety of well documented and tested
model architectures with pre-trained networks are available. Examples
include the VGG-19 (Simonyan and Zisserman, 2014), Xception (Chollet,
2017) and MobileNetV2 (Sandler et al., 2018) integrated within the Py-
thon Keras deep-learning Application Programming Interface (API).
Pre-trained models are highly effective for model-based transfer learning
(Pan and Yang, 2009; Marmanis et al., 2015), but they only include the
RGB channel and do not support the near infrared and shortwave infrared
channels commonly available in satellite imagery (Panboonyuen et al.,
2019). However, most pre-trained models contain a large number of var-
iables and are computationally demanding during training and inference.
Lightweight models would yield large cost reductions when applied at
scale using high resolution satellite imagery for field scale mapping
purposes.

The objective of this study is to apply cloud enabled deep-learning
technologies at scale using high resolution satellite imagery to map
sugarcane areas in support of reducing agricultural burning. We use three
different strategies to map sugarcane in Thailand with a lightweight
MobileNetV2 network. We tested the network using (1) the RGB channels
in a pre-trained network (referred to as RGBt hereafter), (2) the RGB
channels with randomly initialized weights (RGBr) and (3) the RGB and
Near InfraRed channels is modeled with randomly initialized weights
(RGBN). We report and compare different performance indicators from
the model and from an independent validation data set. Innovations of
this study include the application of deep-learning at scale using high
resolution satellite imagery in Google Earth Engine. The results of this
study should help guide the scientific community in applying effective
lightweight deep-learning networks using high resolution satellite im-
agery for environmental mapping.

2. Materials and methods

2.1. Study region

This study was conducted for Thailand (Fig. 1). Thailand is located in
Southeast Asia and has a population of approximately 70 million. The
agricultural sector was transformed from a system that predominantly
relied on subsistence farming system in the early 1960's to a system
focused on commercial crops in the 1980's (Trisurat et al., 2019).
Whereas agricultural exports are still an important economic activity in
Thailand, the manufacturing and service sectors have been the main
focus for economic growth. However, the expansion and intensification
of the agricultural production system has also taken its toll on the envi-
ronment (Santiphop et al., 2012).



Fig. 1. Thailand is located in Southeast Asia.
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2.2. Workflow

The workflow is shown in Fig. 2. The NICFI Planet basemaps were
uploaded to a Google Cloud Storage bucket and then ingested into Google
Earth Engine as assets. The data was then sampled using annotated
Fig. 2. The workflow includes the Google cloud bucket for data storage, Google Earth
inference, a virtual machine for training and the Google AI platform where the mod
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sugarcane maps from the Land Development Department of Thailand.
The data samples were exported as TensorFlow Records, aka TFRecords,
to the cloud storage bucket. A Virtual Machine was then used to train the
TensorFlow model using those TFRecords. The trained model was then
deployed to the Google AI platform. Finally, the deployed model was
used in the Earth Engine to perform inference for the country of Thailand.

2.3. Data description

The Planet surface reflectance basemaps that were made available
through the NICFI were used in this study. This data has a spatial reso-
lution of 4.77 m. We used the 2017 imagery that covered the period from
June–November. Planet basemaps are particularly suitable for computer
vision analytics as they are pre-processed data that account for sensor
characteristics, sun angle, spatial accuracy and other artifacts caused by
haze, light and topography. These basemaps were created from the
PlanetScope satellite constellation. The 4-band PlanetScope imagery was
corrected using the 6SV (Second Simulation of the Satellite Signal in the
Solar Spectrum-Vector version (Vermote et al., 2006)) in combination
with MODIS data while accounting for sun angle and satellite view
geometry.

2.4. Data sampling

Hand digitized polygons of sugarcane from the Land Development
Department of Thailand were used to train the model. However, this data
was created in 2015 whereas, the satellite imagery used was taken from
2017. Due to this temporal misalignment between the satellite imagery
and the polygons, data was filtered to areas that remained cropland over
the two year period, and these locations were included for sampling. The
polygons were rasterized to match the spatial resolution of the satellite
imagery. A total of 100,511 data points were randomly placed across
those areas. The data was subset into three portions, 70 % was used for
training, 20 % for testing and 10 % for validation. Image patches were
created at the center of each randomly distributed point. These image
patches were 256 by 256 pixels and were then exported with binary
information on sugarcane and the red, blue, green, and NIR bands.

2.5. Model architecture

We used a U-Net convolutional network (Fig. 3 (Ronneberger et al.,
2015)) with a MobileNetV2 in the contraction path (encoder).
Engine Asset storage, the Earth Engine compute platform for data sampling and
els were deployed.



Fig. 3. U-Net model architecture used in this study. The MobileNetV2 was used as the encoder branch.
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MobileNetV2 is an improvement on the MobileNetV1 (Howard et al.,
2017) which is a lightweight network developed to efficiently balance
performance and accuracy. The main innovation from MobileNetV1 was
to replace convolutional layers with depth-wise separable convolutions
which are computationally much cheaper. The convolutional layers were
replaced by a 3 � 3 depth-wise convolution followed by a 1 � 1
point-wise convolution layer. Whereas the point-wise convolution layer
kept the number of dimensions the same or made them larger in version
1, it is used as a ‘bottleneck’ or ‘projection layer’ in version 2, which
means that it reduces the number of dimensions. Moreover, an expansion
layer was added at the beginning of the block and a residual connection
was added.

The first 13 blocks of the MobileNetV2 were included in the U-Net
convolutional network (Fig. 3). In the encoder, convolutions instead of
max pooling operation are used to reduce the spatial dimensions. The
number of channels are denoted on top of each block. For example, the
lowest resolution is 16 � 16 pixels and contains 576 channels. The input
image, block 1, 3, 6 and 13 are connected to the decoder and 2 � 2
deconvolutions are used for upsampling. The decoder includes the con-
ventional 3 � 3 ReLU convolutions in the upsampling path. We used a
sigmoid activation function at the output layer to represent pixel sugar-
cane probability. Furthermore, we used the Adam optimizer (Kingma and
BaAdam, 2014) with default settings. Data augmentation (Shorten and
Khoshgoftaar, 2019) was applied by randomly flipping and rotating the
data patches. Data augmentation operations were randomly applied to
70 % of the input data.
2.6. Performance evaluation

The accuracy (eq. (1)) and F1-score (eq (2)) were used as the metric
for model performance in this study. The F1-score is calculated using the
precision and recall. The precision (eq (4)) is the ratio of correctly pre-
dicted positive observations to the total predicted positive observations.
4

The recall (eq. (3)), also referred to as sensitivity, represents the ratio of
correctly predicted positive observations to all the observations in the
class. The F1-score (eq. (2)) is a weighted average of precision and recall.
It takes into account both the false positives and false negatives.

accuracy ¼ TN þ TP
TPþ FPþ TN þ FN

(1)

F1 ¼ 2*ðRecall*PrecisionÞ
ðRecallþ PrecisionÞ (2)

recall ¼ TP
TPþ FN

(3)

precision ¼ TP
TPþ FP

(4)

where:
TP is the True Positives, which means that the actual class and the

predicted class are both positive.
TN is the True Negatives, which means that the actual and predicted

class are both negative.
FP is the False Positives, which means that the actual class is negative

whereas the predicted class is positive.
FN is the False Negative, which means that the actual class is positive

but the predicted class is negative.
Besides model validation, a manual independent validation was

conducted. A random stratified sampling approach was used for each of
the three model outputs and the combined outputs. Firstly, 100 random
stratified points were placed on areas with a probability higher than 50%
and 167 on areas with a probability lower than 50 % on each map.
Furthermore, 50 additional points were placed on areas with probabili-
ties higher than 50% on all three maps as well as for all combinations of 2
maps. This resulted in a total of 1001 points with half the points



Table 1
The accuracy, F1-score, precision and recall for the RGBt, RGBr and RGBN
models.

Accuracy F1 Precision Recall

RGBt 0.9554 0.9550 0.9550 0.9550
RGBr 0.9265 0.9262 0.9262 0.9262
RGBN 0.9003 0.9297 0.9297 0.9297
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associated with sugarcane plantations and the other half with other land
cover classes. The points were shuffled and uploaded to Collect Earth
Online (CEO (Saah et al., 2019)). These were classified using the 2017
NICFI imagery in CEO.

3. Results

The training and testing performance of the RGBt, RGBr and RGBN
models are shown in Fig. 4 (top). It can be seen that the model using
model-based transfer learning has the best and smoothest performance in
terms of loss function, F1-score, precision, and recall. The RGBr and
RGBN models have a comparable performance in terms of training, but
the loss function and F1-score of the RGBN model shows more erratic
behaviour between the iterations. The RGBr model shows more aberrant
behaviour during testing in the early stage of the training.

The model validation results are shown in Table 1. It can be seen that
the F1, precision, and recall score are the same for each model. The
highest model accuracy was found for the RGBt model, followed by the
RGBr and the RGBN model. The best and worst model performance is
consistent for all measurements, the F1-score, precision, and recall.
Inference was run on Google Earth Engine for all three models. We show
the results for the Lop Buri province in Fig. 5. The three different models
are shown and the sum of all models (bottom right), where a 3 means that
all models predict sugarcane and 0 means that 0 models predict sugar-
cane. While there is much agreement for areas with dense sugarcane
plantations, we find disagreement around the edges. The RGBt model
covers a generally larger area than the other models.

Inference was ran for all three maps to calculate sugarcane pixel
probability from the high resolution satellite imagery. Furthermore, a
total of 1001 sample points were manually classified in CEO. The data
points were used to sample the probability distributions of the three maps
(Fig. 6). It was found that pixels classified as other have a distribution
close to 0 for all models, but outliers exist. For sugarcane, it can be seen
that the RGBt model has the highest median (93 %), followed by the
RGBN (79%)model and the RGBrmodel (74%). The RGBt model has the
highest minimum (34 %), again followed by the RGBNmodel (10 %) and
the RGBr model (0 %). Fig. 6 displays the RGBt model having the least
Fig. 4. Loss (left) and F1-score (right) for training (top) and testing (bottom). The di
(blue), without transfer learning (red) and without transfer learning including the N
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overlap between the two classes, Sugarcane and other, while the RGBr
model displayed the most overlap for the classes. This is most evident
with the long whiskers associated with the RGBr sugarcane class.

We used a 50% threshold to convert the probability map into a binary
map for sugarcane and other. The accuracies, F1-scores, precision and
recall of the independent validation points are shown in Table 2. It was
found that the RGBt model has the highest accuracy, followed by the
RGBN and RGBr. The same order applies to the F1 scores and recall.
However, the RGBr model has the best performance in terms of precision.
For all models, the precision is higher than the recall. It can also be noted
that the independent validation accuracies vary from the ones reported
by the model. Differences in recall between the model and independent
validation are most notable.

4. Discussion

In this study we used a MobileNetV2 U-Net convolutional network for
semantic segmentation of sugarcane in Thailand. For three different
approaches we found model accuracies between 90 and 95 %, but an
independent assessment resulted in accuracies between 86 % and 91 %.
These accuracies are in line with previously reported numbers. For
example, Ma et al. (2019) reported a median accuracy of around 92 % for
deep-learning approaches in land cover mapping classification studies.
Yosinski et al. (2014) found that transfer learning yields better results
than randomly initialized weights. These findings are supported by this
study where the transfer learning model had the best performance. Pires
de Lima and Marfurt (Pires de Lima and Marfurt, 2020) applied transfer
learning for sensing scene classification and state that transfer learning is
a powerful tool for remote-sensing scene classification. Moreover, they
fferent colors represent training using only RGB channels with transfer learning
IR channel (green).



Fig. 5. Results of inference for Lop Buri for the RGBt (top left), RGBr model (top right) RGBN model (bottom left) and the combination of all models where the number
represents the number of model agreements.
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note that randomly initialized weights are also an appropriate choice for
training given that the datasets are large enough. They used 21,800
samples whereas around 70,000 training samples were used in this study.
The improved performance of the pre-trained network highlights the
importance of large scale remote sensing archives such as BigEarthNet
(Sumbul et al., 2019) and Radiant MLhub to develop and share
pre-trained networks that cover multiple parts of the electromagnetic
spectrum using various observation technologies. Dimensional reduction
could be another viable strategy to reduce the number of spectral bands
(Haut et al., 2018).

The independent sampling strategy highlights the discrepancies be-
tween the performance statistics reported by the model and the ones
found using an independent sample. The most notable difference is the
difference in recall, which was found to be much lower in the indepen-
dent validation. This difference indicates a higher number of false neg-
atives, which is specifically pronounced in the RGBrmodel. The precision
scores are rather high, which indicates a low number of false positives in
the data. The discrepancy between the two might be caused by spatial
auto-correlation due to overlap in the patches. It should also be noted
that the independent sample was much smaller than the modeled one.
Nonetheless, we recommend to include an independent validation when
using deep-learning techniques for remote sensing and Earth science
6

applications. Independent accuracy estimates can also be used for area
estimations and error quantification (Olofsson et al., 2013, 2014).

The integration of Google AI platform with Google Earth Engine en-
ables deploying deep-learning technologies at scale. The use of light-
weight networks can be beneficial as they are computationally much
more efficient and reduce costs. However, training and inference of large
networks is computationally demanding. The models in this study were
trained using 4 NVIDIA TESLA K80 GPU's, 24 cpu's and 224 GB RAM,
whereas inference was done on the cloud using the Google AI GEE
integration. Computational demands intensify when applying these
networks on high resolution satellite imagery at scale. The mobileNet
networks were developed for their computational efficiency, due to the
limited number of parameters and computational efficiency. The study of
Yu et al. (2019) used a MobileNetV2 Network for ship detection and
reported a five times speed enhancement compared with conventional
methods.

A limitation of the current modelling approach is that the model was
trained using a remote sensing composite containing data between June
and November. As such, no phenological characteristics were included in
the model. Methods to include phenology-based features could include
using multi-temporal composites where all bands are added as layers in
the network. However, a different model design would be required to



Fig. 6. Probability distribution of independent validation (1001 points) for the rgb model with transfer learning (RGBt), the rgb model without transfer learning
(RGBr) and the RGBN model without transfer learning (RGBN).

Table 2
Independent validation results.

Accuracy F1 Precision Recall

RGBt 0.9141 0.921 0.949 0.895
RGBr 0.8681 0.885 0.964 0.819
RGBN 0.8911 0.903 0.957 0.855
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allow for transfer learning using composites from multiple dates, as
demonstrated e.g. by the work of Zhao et al. (2020). They combined
transfer learning with phenological information using a decision tree.
Recurrent Neural Networks are also often used to map phenological
characteristics. For example, (Cris�ostomo de Castro Filho et al., 2020)
used a long short-term memory (LSTM (Hochreiter and Schmidhuber,
1997)) to map rice crop, whereas Sun et al. (2019) implemented a
workflow using Google Earth Engine to predict Soybean Yield with a
CNN-LSTM Model.

In this study we demonstrated that the integration of cloud computing
technologies, AI and open and free high resolution satellite imagery en-
ables us to map the Earth's surface with great precision. Understanding
the location, frequency of burning and other physical and socio-economic
drivers will help formulate effective strategies to reduce burning,
improve air quality and reduce health risks for millions of people. The
data generated in this study will be combined with other data-sources on
historical fire patterns and other socio-economic data.

5. Conclusion

We conclude that: (1) lightweight deep-learning models can be
effective strategies to map land cover within large areas with accuracies
greater than 86 %; (2) model-based transfer learning can be an effective
strategy for land cover mapping, especially when limited data is available
and furthermore yield higher accuracies than randomly initialized net-
works; (3) an independent validation using a robust sampling strategy is
advised to evaluate final model performance.
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