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A B S T R A C T

Satellite remote sensing plays an important role in mapping the location and extent of surface water. A variety of
approaches are available for mapping surface water, but deep learning approaches are not commonplace as they
are ‘data hungry’ and require large amounts of computational resources. However, with the availability of various
satellite sensors and rapid development in cloud computing, the remote sensing scientific community is adapting
modern deep learning approaches. The new integration of cloud-based Google AI platform and Google Earth
Engine enables users to deploy calculations at scale. In this paper, we investigate two methods of automatic data
labeling: 1. the Joint Research Centre (JRC) surface water maps; 2. an Edge-Otsu dynamic threshold approach. We
deployed a U-Net convolutional neural network to map surface water from Sentinel-1 Synthetic Aperture Radar
(SAR) data and tested the model performance using different hyperparameter tuning combinations to identify the
optimal learning rate and loss function. The performance was then evaluated using an independent validation
data set. We tested 12 models overall and found that the models utilizing the JRC data labels showed a better
model performance, with F1-scores ranging from 0.972 to 0.986 for the training test and validation efforts.
Additionally, an independently sampled high-resolution data set was used to further evaluate model performance.
From this independent validation effort we observed models leveraging JRC data labels produced F1-Scores
ranging from 0.9130.922. A pairwise comparison of models, through varying input data, learning rates, and
loss functions constituents, revealed the JRC Adjusted Binary Cross Entropy Dice model to be statistically different
than the 66 other model combinations and displayed the highest relative evaluations metrics including accuracy,
precision score, Cohen Kappa coefficient, and F1-score. These results are in the same range as many of the
conventional methods. We observed that the integration of Google AI Platform into Google Earth Engine can be a
powerful tool to deploy deep-learning algorithms at scale and that automatic data labeling can be an effective
strategy in the development of deep-learning models, however independent data validation remains an important
step in model evaluation.
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1. Introduction

Surface water is an important natural resource that sustains human
wellbeing by its many purposes including drinking water, sanitation, and
irrigation (Poortinga et al., 2017). Surface water is also an important
component in the hydrological cycle and serves functions including
electricity production, navigation, and use for industrial processes
(Aekakkararungroj et al., 2020). Furthermore, it plays an important role
in dictating the climate, biological diversity, and land conservation
practices (Tockner and Stanford, 2002; Kong et al., 2017; Valentin et al.,
2008). However, the occurrence of surface water also has negative con-
notations, for example in the habitat characteristics and resulting
occurrence of vector borne diseases as well as disasters such as floods and
drought (Dom, 2019). As such, it is evident that insight to the location
and extent of surface water is critical in the context of sustainable water
management. Additionally, the capability to rapidly assess, map, and
disseminate impacted areas is essential to assisting national and local
governments, NGOs and emergency services, which enables information
to be gathered over large distances and visualized for both disaster pre-
paredness and planned response efforts (Nemni et al., 2020; Phongsapan
et al., 2019).

Satellite remote sensing has traditionally been used to map the
location and extent of water surfaces. There are numerous approaches
including spectral indices (Gao, 1996), machine learning technologies
(Huang et al., 2018), and dynamic thresholding (Tiwari et al., 2020;
Markert et al., 2020). Furthermore, a variety of active and passive sensors
have been used to study surface water occurrence. Whereas passive
sensors rely mostly on the visible and infrared part of the electromagnetic
spectrum, active sensors use the microwave spectrum (Flores-Anderson
et al., 2019). A notable effort to map surface water was done by Pekel
et al. (2016). They created a planetary scale surface water time-series
using the Landsat legacy data-series for the past 3 decades. However,
these maps have a medium-spatial resolution and data is impeded by
atmospheric conditions. This is a major issue in tropical areas with
persistent cloud cover. More recently launched satellites use active
space-borne microwave remote sensing. Data from these satellites have a
finer resolution and are not affected by cloud cover (Oddo and Bolten,
2019). The use of UAVs has dramatically increased due to their relatively
low-cost and high-operational capability to rapidly capture images and
generate high resolution map products (Bhandari et al., 2015; Osco et al.,
2021). The application of UAVs alongside remotely sensed data is on the
rise (Emilien et al., 2021; Easterday et al., 2019), in particular the use of
UAVS for water extraction mapping is a growing field [20?, 21], however
the resources and costs associated with sensor calibration and image
assemblage are a frequent challenge.

Deep learning and big data analytics have become commonplace in
many scientific disciplines. This paradigm shift is also quickly evolving in
the field of satellite remote sensing. However, deep learning techniques
are notorious for being ‘data hungry’ and have large computational de-
mands (Miko lajczyk and Grochowski, 2018; Kaushal et al., 2019). In the
context of applied Earth observations, there is a growing wealth of data
with added location, time, and multi-modal data (e.g. active and optical)
components (Zhu et al., 2017). Cloud-based geo-computational platforms
such as Google Earth Engine (GEE) have resolved many of the data
management and computational challenges by centralizing and stan-
dardizing data into a common framework reducing barrier to use Earth
Observation data (Gorelick et al., 2017). GEE has been leveraged in
numerous scientific studies (Tassi and Vizzari, 2020; Campos-Taberner
et al., 2018; Aguilar et al., 2018; Parks et al., 2018) and is also used for
operational purposes (Uddin et al., 2019; Markert et al., 2018; Poortinga
et al., 2018). The recent integration of big data with deep learning
technologies enables utilization by a wide variety of users including those
across scientific disciplines.

Methods and terminologies for reference data labeling (also referred
to as data collection), training models, and image classification (also
referred to as inference) are disciplinary and difficult to adapt to other
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fields. Currently there is a large variety of model repositories with pre-
trained models and large hierarchical databases (Deng et al., 2009)
with associated labeled data, however, these mostly include
common-place objects and are built around the RGB channels of con-
ventional cameras. Moreover, reference data collection campaigns have
traditionally used point data for image classification schemes (Saah et al.,
2019a). Deep learning approaches can leverage image patches, which we
defined as a 256� 256 neighborhood, for image segmentation and object
detection algorithms (Sharma et al., 2017). Additionally, Earth obser-
vation satellites operate in different parts of the electromagnetic spec-
trum and are not constrained to visible light. Remote sensing analyses are
further complicated by noise measurement caused by ephemeral varia-
tions in atmospheric conditions, sensor characteristics, or background
sources that can negatively affect the performance of classification al-
gorithms. Efficiently collecting large amounts of training image patches
could significantly speed up the development of neural networks. How-
ever, combining different data sources presents a challenge in terms of
spatio-temporal alignment and consistency.

Although the integration of GEE with Google AI platform enables
users to deploy deep learning technologies and approaches at unprece-
dented scales, it remains a challenge to develop these models due to the
significant data requirements, the computational cost, and the degrees of
freedom in the model. Moreover, deep learning methodologies often split
the data in three components of training, testing, and validation, where
the latter is reported as an independent measure for accuracy. In this
study we use the GEE computational platform to map surface water from
Sentinel-1 Synthetic Aperture Radar (SAR) data (Torres et al., 2012). The
study has three main objectives: (1) to study and compare two methods
of automatic data labeling for training, testing, and validating deep
learning models; (2) to perform an extensive hyperparameter comparison
to identify the optimal learning rate and loss function; (3) to conduct an
independent validation leveraging higher resolution data to compare
with the reported model results. The current study should help guide the
remote sensing community in developing robust strategies for data la-
beling, model development, and model validation.

2. Methods

2.1. Study area

The study was conducted in Cambodia (Fig. 1), a country located in
Southeast Asia with a population of approximately 16 million people
(CIESIN, 2016). Cambodia has a tropical monsoon climate with most
rainfall occurring between the months June and September (Misra and
DiNapoli, 2014). Cambodia is located in the lower downstream part of
the Mekong river basin. The Mekong river is the lifeblood for a large
portion of the Khmer people who heavily rely on agriculture for their
livelihoods. Moreover, Cambodia is host to the Tonle Sap, the largest
fresh water lake in Southeast Asia. The Tonle Sap lake has an extremely
productive ecosystem, but also serves as a flood buffer for the lower
Mekong basin (Kummu et al., 2014). Monitoring and understanding
surface water dynamics is important for flood disaster response but also
for the protection of a valuable ecosystem. The construction of upstream
reservoirs is likely to impact natural flow dynamics (Aekakkararungroj
et al., 2020). The Lower Mekong region experiences a high percentage
(>50%) annual mean cloud frequency, with a relatively low annual cloud
variability as well (Wilson and Jetz, 2016). SAR imagery enables effec-
tive mapping and monitoring of surface water dynamics on a regular
interval without the impediment of persistent cloud cover (Sanyal and
Lu, 2004).

2.2. Sentinel-1 data

The Sentinel-1 satellites carry a C-band SAR sensor. This sensor can
operate in multiple acquisition modes at different ground sampling dis-
tances (GSD). We utilized the Sentinel-1 Level-1 Interferometric Wide



Fig. 1. Study Area in Southeast Asia focused on Cambodia.

Table 1
SAR Indices based on Sentinel-1 backscatter data.

Index Definition

Polarized Ratio (VHrVV) ((Huang et al., 2018; Brisco et al., 2011)) σ0V H

σ0V V

Normalized Difference Polarized Index (NDPI) ((Huang et al., 2018;
Mitchard et al., 2012))

σ0V V � σ0V H

σ0V V þ σ0V H

Normalized VH Index (NVHI) ((Huang et al., 2018; McNairn and
Brisco, 2004))

σ0V H

σ0V V þ σ0V H

Normalized VV Index (NVVI) ((Huang et al., 2018; Charbonneau et al.,
2005))

σ0V V

σ0V V þ σ0V H

Radar Vegetation Index (RVI) ((Charbonneau et al., 2005;
Nasirzadehdizaji et al., 2019; Yamada, 2015))

4σ0V H

σ0V V þ σ0V H
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swath (IW) Ground Range Detected (GRD) with spatial resolution (rg x az
m) at 20 � 22 and pixel spacing (rg x az m) 10 � 10 (Potin et al., 2012)
specifically leveraging the dualpolarization with a vertical transmitting
with vertical receiving (VV) and vertical transmitting with horizontal
receiving (VH). All tiles were processed as described by (Markert et al.,
2020) before ingesting them into GEE. Specifically, custom processing
was done for each tile using the Sentinel-1 SNAP7 Toolbox (Sentinel
Application Platform, http://step.esa.int/main/toolboxes/snap/), where
the Digital Elevation Model (DEM) data from the Shuttle Radar Topog-
raphy Mission (SRTM) (Farr et al., 2007) was used to perform radio-
metric terrain correction (RTC) and geocoding. RTC processing was
based on the pixel-area integration algorithm by (Small, 2011). Addi-
tional pre-processing steps were conducted to provide the radar back-
scatter data set in dB units. Additionally, a Lee-sigma speckle.

Filter (Lee et al., 2009) was applied which is not included as standard
pre-processing step in the Sentinel-1 product in the GEE data catalog.

In this study we not only included the backscatter observations from
VV and VH channels but also the indices shown in Table 1. Where σ0 is
the sigma naught backscatter coefficients for VH polarization and σ0 is
the sigma naught backscatter coefficients for VV polarization. Employing
SAR indices are critical because they are generated from a combination of
radar measurements, which can improve the sensitivity for estimating
and/or monitoring a surface characteristic such as landcover or surface
water (Flores-Anderson et al., 2019; Kim et al., 2011; Huang et al., 2017).
2.3. Training data

Training data were collected for the year 2018. Two different
methods for data labeling were applied. For the first method, the
3

Sentinel-1 data was combined with the Joint Research Centre (JRC)
Monthly Water History, EC JRC/Google (Pekel et al., 2016) available in
the GEE data catalog.We refer to this input data set as “JRC”. The Landsat
5, 7, and 8 derived JRC data set contains the location and temporal
distribution of surface water from 1984 to 2019 with water, land, and
no-data as specified classes at a 30 m spatial resolution. No-data is linked
to observations that contain clouds, cloud shadows, or other artifacts;
no-data area were masked out and not used in calculations.

To collect training data, 100 random stratified points were distributed
across the scene extent, balanced between water and land classes. This
process was repeated for a total of 179 scenes observed in Fig. 2. The JRC
water map of the respective month when the image was taken was
included. We then buffered the individual points to construct the afore-
mentioned image patches, to match a 256 � 256 square at a 10 m spatial

http://step.esa.int/main/toolboxes/snap/


Fig. 2. Data labels were collected from the JRC data set and the Edge-Otsu method. A total of 8843 random stratified points were placed on 179 scenes, generating the
8843 patches. These were sampled on a 256 � 256 pixel window.

T. Mayer et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 2 (2021) 100005
resolution at each point. We sampled the JRC image and removed all
patches that contained no-data pixels. We used a total of 179 scenes and
included a total of 8843 patches with a 256 � 256 neighborhood in the
analysis.

Due to temporal and spatial inconsistencies between the Landsat
derived JRC water data and Sentinel-1 SAR data, for the second data
labeling approach, using the VV polarization, we applied a dynamic
thresholding method to create binary land and water maps for each
Sentinel-1 scene. Specifically to the Sentinel-1 SAR data set we applied
the Edge-Otsu algorithm and refer to this input data set as “Edge”
(Donchyts et al., 2016; Markert et al., 2020). The algorithm uses an index
highlighting water to extract edges utilizing a Canny edge filter (Canny,
1986), which were then buffered, and sampled as input for Otsu
thresholding (Otsu, 1979). The binary water/non-water maps were then
sampled using the same collection of 256� 256 patches, for all scenes, to
ensure a consistent data series for comparison. For a complete description
and application of the Edge algorithm see Markert et al., 2020 (Markert
et al., 2020).
2.4. Data processing

The data processing workflow is shown in Fig. 3. The labels were
combined with the relevant Sentinel-1 imagery and exported as Ten-
sorFlow (TF) records to Google Cloud Storage. These records were then
imported into a virtual machine with 24 CPU cores, 224 GB memory and
4 T M60 graphic.

Cards. The hyperparameter tuning was conducted on the Graphical
Processing Units (GPU). The set of 12 derived models were then exported
to the Google AI platform. The ee.Model.fromApiPlatformPredictor func-
tion in GEE was used to import the model and conduct the inference. The
integration between Google AI Platform and GEE enables large data
processing, however, there is financial cost associated with the inference
4

and training.
2.5. Model architecture

Themodel used in this analysis, depicted in Fig. 4, was inspired by the
U-Net architecture (Ronneberger et al., 2015). The encoder component of
the model is adapted from the Visual Geometry Group (VGG) 19 model
architecture (Simonyan and Zisserman, 2014). This model architecture is
comprised of five multiple convolution layer encoding blocks with a
distinct max pooling layer at the end of each block. This configuration
ultimately increases the feature space and reduces the image resolution.
For the decoder component of the architecture, a custom decoder was
developed which consists of five blocks utilizing bilinear upsampling
layers, followed by convolution layers, and finally regularization layers.
Recent stud-

ies found that transpose convolution layers for upsampling efforts
produces artifacts in the network results, and by using a resize followed
by convolution strategy for upsampling, results are improved (Odena
et al., 2016; Wojna et al., 2019). Each convolution layer in the decoder
was initialized using a He Normal initialization (He et al., 2015) and is
followed by a Batch Normalization layer (Ioffe and Szegedy, 2015) and
Rectified Linear Unit (ReLU) activation function (Nair and Hinton,
2010). The image is upsampled to the input resolution at the end of the
decoder. The skip connections introduced in (Ronneberger et al., 2015),
which concatenate feature maps from each encoder block to the
upsampled feature maps at the beginning of each decoder block with the
same spatial resolution, were included in our network architecture. This
process utilizes a final exit branch consisting of a 2D spatial dropout
(Tompson et al., 2015) and a final 1� 1 convolution employing a softmax
activation function.

Several regularization techniques were applied in the decoder to
reduce overfitting. L2 regularization, with a rate of 1e-3, was applied to



Fig. 3. Processing workflow for the generation of the 12 initial model sets. Color gradients signify the location of the processing workflow across the various
platforms. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. The VGG19 U-Net model architecture used to map surface water. The network consists of 3 � 3 convolution layers (light orange), activation layers (dark
orange), max pooling layers (red), 2D up-sampling layers (green), and an output layer (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

T. Mayer et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 2 (2021) 100005
the parameters of each convolution layer. Gaussian noise was added to
the decoder block.

to reduce the over-fitting, speed up convergence, and to increase
generalization (An, 1996). Finally, a dropout layer (Srivastava et al.,
2014) was included after the first convolution within each decoder block.
Dropout prevents the co-adaptation of neurons which yield relationships
that fail to generalize outside of the training set (Srivastava et al., 2014).

Deep learning models are trained by iteratively minimizing a differ-
ential loss function. Loss functions quantify the error of predictions
5

produced by the network with a single, scalar value. The choice of loss
function can have a large impact on network performance. When con-
ducting network training, we trained for a maximum of fifty epochs,
however, we implemented an early stopping when the loss function did
not improve for seven epochs to prevent overfitting. As neural networks
are essentially approximations of complex functions (Liang and Srikant,
2016), the motivation for early stopping is due to a model's tendency to
learn progressively more complex functions as the number of iterations
increases. By limiting the time spent training the model, the complexity



Fig. 5. Planet Scope imagery coverage with 565 sampled points. Planet images shown in false color R: NIR, G: Red, B: Green. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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of the model can be controlled, improving generalization (Yao et al.,
2007). Model optimization was conducted using the Adam optimizer
(Kingma and BaAdam, 2014).

For both the Edge and JRC derived training data sets, we experi-
mented with three loss functions and two different learning rates titled as
“Fixed” and “Adjusted” hereafter. For the three loss functions, we used
the binary cross entropy (BCE) (Zhu et al., 2018), the dice loss function
(Dice) (Milletari et al., 2016) and a combined BCE Dice loss function. For
one set of loss functions we applied a Fixed learning rate (0.0001),
whereas for the other set we applied an Adjusted learning rate of 0.001
for iterations below 20 epochs, a learning rate 0.0003 for iterations
within 20–35 epochs, and a learning rate of 0.0001 for iterations above
35. The learning rate is an important hyperparameter. If the learning rate
is too low, the network will converge slowly and will be unable to escape
local minima in the loss surface. If the learning rate is too large, the
network will be unable to explore minima in the loss landscape. These
rates where determined through preliminary testing. This resulted in a
set of 12 models. The output from these models provided a probabilistic
confidence layer for the water and non-water classes. The inference was
performed on a set of 11 Sentinel-1 images spanning the wet season
month-month in 2019.
2.6. Accuracy assessment

The F1-score (eq (1)) was used as the metric for model performance in
this study. The F1-score is calculated using the precision and recall. The
precision (eq (3)) is the ratio of correctly predicted positive observations
to the total predicted positive observations. The recall (eq. (2)), also
referred to as sensitivity, represents the ratio of correctly predicted
6

positive observations to the all the observations in the class. The F1-score
(eq. (1)) is the harmonic mean of precision and recall. It takes into ac-
count both the false positives and false negatives.

F1¼ 2*ðRecall*PrecisionÞ
ðRecallþ PrecisionÞ (1)

recall¼ TP
TPþ FN

(2)

precision¼ TP
TPþ FP

(3)

where:
TP is the True Positives, which means that the actual class and the

predicted class are both positive. TN is the True Negatives: which means
that the actual and predicted class are both negative.

FP is the False Positives, which means that the actual class is negative
whereas the predicted class is positive.

FN is the False Negative, which means that the actual class is positive
but the predicted class is negative.

2.7. Performance assessment

An independent validation effort was conducted leveraging high-
resolution (approximately 3 m GSD) Planet Scope visible-near infrared
optical data. A total of 172 Planet Scope images within Cambodia
covering an area of roughly 21,200 km2 were utilized in the analysis.
Each Planet Scope image had a corresponding Sentinel-1 SAR acquisition
for the same date and area of interest. Specifically, the independent



Table 3
For the initial set of 12 models, F1-scores describing model performance for the
variable and fixed learning rates using Dice, BCE, and BCE Dice as hyper para-
mter functions.

Adjusted Fixed

F1-Scores Dice BCE BCE Dice Dice BCE BCE Dice

Epochs 17 16 44 9 22 18
JRC Training 0.984 0.985 0.986 0.983 0.986 0.985

Testing 0.975 0.975 0.976 0.973 0.975 0.975
Validation 0.974 0.974 0.975 0.972 0.974 0.974

Epochs 29 19 12 16 22 21
Edge Training 0.920 0.917 0.916 0.917 0.917 0.916

Testing 0.883 0.883 0.879 0.879 0.882 0.883
Validation 0.944 0.949 0.938 0.930 0.949 0.947
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validation data set was generated utilizing a simple random approach
where sample points were distributed over the Planet Scope imagery
associated with individual 2019 flood events to match the same period of
the models outputs. An individual sampler performed a visual interpre-
tation sampling approach (Lister et al., 2014; Woodward et al., 2018) on
the Planet Scope imagery to estimate the presence/absence of cloud,
water, and nonwater classes. The interpreter utilized a decision tree
approach for classifying the validation samples (Markert et al., 2020) and
the survey was constrained to a 3 by 3 pixel neighborhood to match the
approximate resolution of the surface water products generated (10 m
GSD). Points classified as clouds were removed leaving 565 sample
points available for the validation provided in Table 2. The validation
samples were then used to extract values of water/non-water from the
generated surface water maps.

Additionally, for each model permutation we used a stratified K-Fold
method to partition sub-samples from the larger validation data set
iteratively (Kohaviet al., 1995).

The K-Fold approach allows for cross validation to estimate errors
inherent for all model sets while retaining the original data set's distri-
bution of water/non-water samples. From the generated 10 sub-samples,
we calculated the Cochran's Q (Cochran, 1950) statistic for all 12 initial
models, followed by a pairwise McNemar's test (McNemar, 1947) for
each model constituent. Finally we calculated summary performance
metrics including overall accuracy, precision, Cohen's Kappa coefficient
(Cohen, 1960), and F1-score (Van Rijsbergen, 1979; Chicco and Jurman,
2020) while leveraging the independent validation data set.

3. Results and discussion

3.1. Initial model results

Utilizing the two data labeling approaches, JRC and Edge, distinct
data sets were leveraged via the VGGmodel architecture to produce a set
of 12 initial models. Table 3 shows the performance for training, testing,
and validation using the BCE, Dice, and BCE Dice loss function with a
Fixed and Adjusted learning rate for both input data sets, JRC and Edge.
Specifically, when comparing F1-scores for the validation effort for the
JRC derived models the values ranged between 0.972 and 0.975 while
Edge validation ranged from 0.930 to 0.949. The models utilizing the
JRC derived data set out performed all models employing the Edge data
sets for the training, testing, and validation efforts as well as across all
learning rates and loss functions head to head. This highlights that the
JRC data labeling approach can achieve consistently higher accuracies,
however, it should be noted that the Edge data labeling produced rela-
tively high accuracies constant with Markert et al. (2020).
3.2. Independent validation results

The set of 12 initial models were further evaluated with an inde-
pendent data set derived from a visual interpretation sampling approach
(see Fig. 5). Specifically, the output of the initial set of models utilized a
softmax activation function resulting in the surface water probability
calculated for each pixel. The independent validation data set was then
used to sample the probability for water and non-water. Fig. 6 shows the
Table 2
Sample points and Planet imagery distribution per date.

Sample Points Planet scenes

Date Water Not Water Total Total

2019–09–09 12 14 26 10
2019–09–11 44 75 119 35
2019–10–03 63 80 143 43
2019–10–05 47 92 139 51
2019–10–15 80 58 138 33
Total 246 319 565 172
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probability distributions of the 12 initial models in accordance with the
independent validation data set.

We observed the median probability value for models employing JRC
data sets to be higher for water classified samples across the learning
rates and loss functions ranging from 0.82 to 1.00. Additionally, the
interquartile range and whiskers for the JRC derived water classified
samples were far more compact suggesting a heavily concentrated and
sharply left skewed data prediction. However, for all 12 models we
observed a dramatic left skewed probability distribution for classified
water samples. For non-water classified samples, both JRC and Edge
derived models displayed tight distributions with centered median
values ranging between 0.00 and 0.17. We did not observe a clear visual
difference between models with Adjusted or Fixed learning rates. How-
ever comparing loss functions for non-water classifications the Dice
approach clearly had the tightest distribution centered at 0.00. This held
true across both JRC and Edge derivedmodels when classifying nonwater
suggesting Dice as a preferable loss function for future investigations.
However both BCE and BCE Dice displayed relatively strong results.

All 12 models’ probability distributions displayed a large proportion
of outliers evident between both classified water and non-water samples.
This suggests potential inability to effectively discriminate between
classes. This concern lead the research team to investigate model accu-
racy performance at various binary thresholds which included minimum,
maximum, Q1, Q3, and 0.5 for both water and non-water classifications.
We observed 0.5 as the best performing binary threshold and employed
that for the remaining independent validation effort. The visually inter-
preted data set was randomly split 10 times into training and validation
folds. The resulting analyzed splits were then averaged and the mean was
used to further evaluate model performance for the set of 12 initial
models displayed in Table 4.

When comparing accuracies for JRC and Edge derived models the
values ranged from 0.927 to 0.936 and 0.913–0.927 respectively. JRC
models’ precision was consistent high across all learning rates and loss
functions at 0.9770.982, while Edge models ranged from 0.990 to 1.000.
JRC derived models again displayed higher Cohen Kappa Coefficient
metrics 0.850–0.869 compared to Edge at 0.820–0.850. Lastly the JRC
derived models offered higher F1-Scores ranging from 0.911 to 0.922,
while Edge models ranged from 0.899 to 0.910. We observed a single
model JRC Adjusted BCE Dice which displayed the highest accuracy,
Cohen Kappa Coefficient, and F1-Score as well as relatively high preci-
sion score at 0.982.

Due to the overall high performance observed in Table 4, our team
was interested in statistically identifying the best performing model from
the initial set of 12models. A Cochran Q test was performed to comparing
all 12 models with the independent validation data set to determine
overall model significance. We observed a p-value of 0.0003 displaying
that all models did not perform equally well. From that, our team then
utilized a McNemar's test in a pairwise comparison of all potential model
combinations to elucidate the significant differences, results are dis-
played in table A5. From the statistical comparison of the 66 model
combinations, we observed 9McNemar comparisons with p-values below



Fig. 6. Probability distribution for the 12 different models. The data was sampled from the independent validation data.

Table 4
Reported evaluation metrics from the K-folded validation split utilized in the
Planet Scope imagery independent validation effort. Highlighted grey fields
displayed best performing metrics.

Adjusted Fixed

Validation Split Dice BCE BCE
Dice

Dice BCE BCE
Dice

JRC Accuracy 0.929 0.933 0.936 0.927 0.931 0.935
Precision
Score

0.981 0.977 0.982 0.977 0.981 0.977

Cohen Kappa 0.854 0.861 0.869 0.850 0.858 0.865
F1-score 0.913 0.918 0.922 0.911 0.915 0.920

Edge Accuracy 0.927 0.927 0.913 0.920 0.924 0.927
Precision
Score

0.990 0.990 1.000 0.990 0.995 0.990

Cohen Kappa 0.850 0.850 0.820 0.835 0.842 0.850
F1-score 0.910 0.910 0.899 0.900 0.905 0.910
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0.05, suggesting these models did not perform equally well in the inde-
pendent validation effort. Observed in Fig. 7 the McNemar tables display
the predictive accuracy values when utilizing the 565 available samples
of the independent validation data set. Specifically, the grey upper left
quadrant is correctly classified, and the grey bottom right quadrant is
incorrectly classified when comparing paired models. Additionally we
observed the Edge Adjusted BCE Dice model consisted of 8 of the 9
statically different combination displayed in Fig. 7 and displayed the
lowest relative accuracy displayed in Table 4.

From this series of evaluations, it was identified that all of the models
do display very high metrics, however, they did not perform statistically
equal. This was most evident with Edge Adjusted BCE Dice, which
offered the lowest metrics and was statically the most different from JRC
Adjusted BCE Dice which displayed the highest overall metrics. Fig. 8
displays the JRC Adjusted BCE Dice model output for each of the asso-
ciated independent validation dates, observed in Table 2, and a
8

composite model output overlaid SAR imagery.

3.3. Caveats and limitations

While this study aims to provide a robust analysis comparing two
automated data labeling approaches, with various hyperparameters, for
improved operational surface water detection there are some caveats to
note. First, due to the cost of cloud computing further model compari-
sons, including testing performance relative to classical machine learning
approaches such as Random Forest were limited. Second, this study was
limited due to its geographic scope and temporal range. For the inde-
pendent validation effort only 565 samples, across five surveys dates
were utilized. This was predominantly due to the availability of cloud-
free Planet Scope imagery that coincided with Sentinel-1 imagery dur-
ing the monsoon. This limited the temporal range of the validation effort.
Additionally these independent validation samples were concentrated
within Cambodia, while the initial set of models leveraged region wide
input data. This study incorporated independent validation sample points
from both riverine and lake hydrologic systems, but was ultimately
limited in its investigation of diverse landscapes. SAR based mapping has
been effective in flat terrain, due to the limited radiometric and geo-
metric distortion (Horritt et al., 2003; Wickel et al., 2001). However,
mountainous area with high relief subsequently cause serve radiometric
distortions, and substantial correction efforts are need to reduce these
errors (Song et al., 2007). Additionally, complex.

3.4. Future work

As mentioned in Section 3.3 there are additional efforts that can build
upon this study. Further comparisons with classical machine learning
approaches to assess both performance and ease of implementation.
Performing.

an intensive ablation assessment to investigate the contribution of
training data and SAR indices to model outputs. Continued evaluation of



Fig. 7. From the 66 model combination, 9 model comparisons displayed p-values below 0.05, utilizing a McNemar test. These 9 significant comparisons are displayed
as McNemar tables. The bold text indicates the model constituent that differs in the direct comparisons. forest and vegetation structure impact the performance of SAR
based detection and classification approaches (Chapman et al., 2015; Shupe and Marsh, 2004; O'Shea et al., 2020).
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the JRC data labeling approach will be explored in other regions across
the globe that experience regular flooding. Employing the JRC Adjusted
BCE Dice model to conduct similar thorough validation efforts through a
comparison between Southeast Asia and other regions will provide
crucial performance information. Further testing and utilization of this
deep learning approach will be essential to integrating this workflow into
an automated surface water mapping systems that provide near real-time
inundation maps.

This analysis was conducted with cooperation from the SERVIR-
Mekong project. SERVIR harnesses satellite and geospatial technologies
to assist endusers to more effectively integrate geospatial information
into their decisionmaking process. The ability to supply region wide
surface water maps will further strengthen land cover monitoring
(Poortinga et al., 2019a; Potapov et al., 2019; Saah et al., 2019b), food
security (Poortinga et al., 2019b), and water resource management
9

efforts (Simons et al., 2017) in Southeast Asia.

4. Conclusion

This study explored two different data labeling methods of automatic
data collection, referred to as JRC and Edge, to train a U-Net. The ob-
jectives included comparing different hyperparameters such as Adjusted
and Fixed learning rates and three loss functions, Dice, BCE, BCE Dice to
investigate the hyperparameters contribution to model performance.
Additionally, this study utilized a rigorous independent validation pro-
cess to identify the best performing model for surface water detection.
The results highlighted that the JRC data labeling approach produced the
best performingmodels. In addition, the BCE Dice loss function displayed
the best overall performance. Both the Adjusted and Fixed learning rates
performed similarly with no clear advantage for either approach. Overall



Fig. 8. The best statistically performing model, JRC Adjusted BCE Dice, visualized for each observation date and mosaiced for all dates, displays the predicted
surface water.
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models leveraging both JRC and Edge data sets and varied learning rates
and loss functions performed well, however, a single model statistically
outperformed the rest. From the pairwise McNemar comparisons we
observed that the JRC Adjusted BCE Dice model provided the highest
independent validation accuracy metric of 0.936 and F1-Score of 0.922.
The results from this study can help inform remote sensing users on
employing advanced automatic data labeling approaches by leveraging
existing and freely available data sets.

The results provide insight into utilizing different hyperparameter
tuning approaches and a framework for conducting an independent
validation effort to more effectively identify model performance. These
results contribute to improving the operational surface water map gen-
eration process. This study was conducted in collaboration and with
support from the World Food Program (WFP) and Google. The WFP in-
gests surface water maps into their Platform for Real-time Impact and
Situation Monitoring (PRISM) for flood disaster response. Through this
deep learning application these results contribute to improving the rapid
and automatic operational surface water mapping effort, potentially
increasing the impact to beneficiaries, end-users, and stakeholders dur-
ing humanitarian assistance events (Nemni et al., 2020). Additionally,
integration of the Google AI platform with GEE creates a versatile tech-
nology to deploy deep learning technologies at scale. Data migration and
computational demands are among the main present constraints in
deploying these technologies in an operational setting. Through the
implementation of these scalable technology architectures and the deep
learning approaches described in this study, researchers can provide
humanitarian organizations like WFP with reliable estimates of surface
water throughout the monsoon season, filling a critical information gap
10
for humanitarian response efforts.
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Source code for the processing of the raw Sentinel-1 data to RTC products is available at: https://github.com/Servir-Mekong/sentinel-1-pipeline.
The source code for the Edge Otsu algorithms implemented on GEE with the.

JavaScript API is available at https://code.earthengine.google.com/?accept repo ¼ users/kelmarkert with the code used to export this studies
surface water maps available at: https://code.earthengine.google.com/eed63bb9bb36f346eeb8264c00730c7b. The source code for VGG19 U-Net
model architecture with custom decoder block is available at https://github.com/Servir-Mekong/tf-vgg19-unet. An example for sampling the validation
points from surface water maps and exporting the results is available at: https://code.earthengine.google.com/72e2ee06cbe46c2702f49bdc86b955b3.

Appendix A
Table A.5
McNemar pairwise comparison of all 66 models with varied input, learning rates, and loss functions. Highlighted grey fields displayed p-values below 0.05

JRC Edge JRC Edge
Pairwise McNemar
 Adjusted
 Adjusted
 Fixed
 Fixed
p-values
 Dice
 BCE
 BCE Dic
 Dice
 BCE
 BCE Dice
 Dice
 BCE
 BCE Dice
 Dice
 BCE
 BCE Dice
JRC
 Adjusted
 Dice
 –
 0.625
 0.125
 1.000
 1.000
 0.049
 1.000
 1.000
 0.375
 0.179
 0.507
 1.000

BCE
 –
 0.625
 0.507
 0.507
 0.026
 0.25
 1.000
 1.000
 0.092
 0.266
 0.507

BCE Dice
 –
 0.179
 0.179
 0.007
 0.125
 0.375
 1.000
 0.022
 0.092
 0.179
Edge
 Adjusted
 Dice
 –
 1.000
 0.038
 1.000
 0.687
 0.343
 0.125
 0.625
 1.000

BCE
 –
 0.038
 1.000
 0.687
 0.343
 0.125
 0.625
 1.000

BCE Dice
 –
 0.096
 0.030
 0.016
 0.423
 0.423
 0.038
JRC
 Fixed
 Dice
 –
 0.500
 0.125
 0.343
 0.753
 1.000

BCE
 –
 0.625
 0.109
 0.343
 0.687

BCE Dice
 –
 0.057
 0.179
 0.343
Edge
 Fixed
 Dice
 –
 0.726
 0.125

BCE
 –
 0.625

BCE Dice
 –
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