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Abstract: Understanding land cover change dynamics and potential pathways of change is of critical
importance for sustainable resource management, to promote food security and resilience on a
range of spatial scales. Data scarcity is a key concern, however, with the availability of free Earth
Observation (EO) data, such challenges can be suitably addressed. In this research we have developed
a robust machine learning (random forest) approach utilizing EO and Geographic Information System
(GIS) data, which enables an innovative means for our simulations to be driven only by historical
drivers of change and hotspot prediction based on probability to change. We used the Mekong
region as a case study to generate a training and validation sample from historical land cover
patterns of change and used this information to train a random forest machine learning model.
Data samples were created from the SERVIR-Mekong land cover data series. Data sets were created
for 2 categories both containing 8 classes. The 2 categories included—any generic class to change
into a specific one and vice versa. Classes included the following: Aquaculture; Barren; Cropland;
Flooded Forest; Mangroves; Forest; Plantations; Wetlands; and Urban. The training points were
used to sample a series of satellite-derived surface reflectance products and other data layers such
as information on slope, distance to road and census data, which represent the drivers of change.
The classifier was trained in binary mode and showed a clear separation between change and no
change. An independent validation dataset of historical change pixels show that all median change
probabilities are greater than 80% and all lower quantiles, except one, are greater than 70%. The 2018
probability change maps show high probabilities for the Plantations and Forest classes in the ‘Generic
to Specific’ and ’Specific to generic’ category, respectively. A time-series analysis of change probability
shows that forests have become more likely to convert into other classes during the last two decades,
across all countries. We successfully demonstrated that historical change patters combined with
big data and machine learning technologies are powerful tools for predictive change analytics on a
planetary scale.
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1. Introduction

Over the past few decades, population and economic dynamics have driven major land cover
transitions. Undoubtedly, the influence of anthropogenic land use and land cover change has allowed for
a rapid increase in food production and enabled the provision of a large variety of important commodities.
Land cover transitions have been important drivers of social and economic development however, they
have also been a significant source of anthropogenic carbon emissions [1–3] and reduced resilience to
natural disasters. For example, the conversion of forest to farmland has been reported to negatively
affect the hydrology and natural drainage due to a reduction of infiltration and groundwater recharge,
generating increased surface runoff [4–6]. Therefore, understanding land cover change dynamics and
potential pathways of change are becoming increasingly more important in the present-day world.

There are a variety of approaches to simulate future land cover change trajectories. These approaches
include simple system representations with a few driving factors, to complex simulations based on a more
profound understanding of specific interactions [7]. Drivers of change often include both socio-economic
and biophysical factors [8]. Models that include mostly regional drivers are often referred to as ‘top-down’
approaches, whereas models that incorporate changes dictated by local processes are referred to as
’bottom-up’ approaches [9]. Land cover change models have been tested over a range of spatial scales,
from regional to global. Examples of different models are listed in reviews such as Verburg et al. [10],
Schaldach and Priess [11], Matthews et al. [12]. However, these models can be data intensive and the
final results are mostly reliant on specific decisions made by the operator.

Saah et al. [13,14] developed a yearly land cover data series for the years 1987–2018. The data
series contains 18 classes with a 30 by 30-meter spatial resolution for the greater Mekong region,
including Viet Nam, Lao PDR, Cambodia, Thailand and Myanmar. Historical data is extremely
beneficial when trying to understand trends and the evolution of a landscape, as well as its relation to
different functions and services. Although such data is invaluable when studying historical patterns,
particularly for various stakeholders including government agencies, NGOs and other (inter)national
agencies, it does not provide insight into future pathways regarding land cover change dynamics.
Mapping the future probable pathways will aid policymakers to address important issues such as
those relating to ecosystem services [15], disaster preparedness [16] and environmental protection.

In this study we present an innovative method to simulate future land cover change trajectories
using machine learning. We use the historical land cover time-series to create a training sample with
layers capturing the spatio-temporal changes. This information is then used to train a model using a
variety of spatial data sources, including moderate resolution satellite imagery, census data and other
satellite-derived data products. The novel part of using machine learning in a land cover change study,
is that the projection of future change probabilities is based solely on the historical change drivers.
Thus, the model does not depend on specific parameters defined by the operator, like other methods
previously mentioned. This study was carried out for the Greater Mekong region, but has the potential
to be up-scaled on a planetary level, as only freely available global products were used.

2. Materials and Methods

2.1. Study Region

This study was conducted for the Mekong region (Figure 1). The study area incorporates five
countries including Cambodia, Lao People’s Democratic Republic (Lao PDR), Myanmar, Thailand, and
Viet Nam. Together, these countries have a combined population of 240 million people, covering a
geographical area of approximately 1.9 million km2. Of these countries, Thailand is the most developed
country and consequently has had a large proportion of its natural landscape altered. Viet Nam is the
most populated country in the region, undergoing rapid globalisation and economic growth. Economic
and population dynamics exert great pressure on natural resources, especially in this region. Lao PDR,
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Cambodia and Myanmar still have large natural areas remaining however, these are extremely vulnerable
due to cultivation practices, commercial logging, and widespread agricultural expansion.

Figure 1. The Mekong study area includes Cambodia, Lao People’s Democratic Republic, Myanmar,
Thailand, and Viet Nam.

2.2. Data Description

This study utilized SERVIR-Mekong’s land cover time-series maps, which were generated using
the Regional Land Cover Monitoring System (RLCMS). The data was extracted for the period from
1988–2018, using the Landsat and MODIS legacy collections and machine learning methods in the
Google Earth Engine (GEE) open platform. A study by Saah et al. [13] outlines all specific technical
details regarding the workflow and data processing for this system. A unique feature of the data is
that it contains explicit error quantification on a yearly timescale, created from a decision tree logic
and Monte Carlo simulations.

Data Sampling

A sample was created using SERVIR-Mekong’s land cover maps. We defined two categories:
‘Specific to Generic’ and ‘Generic to Specific’, as shown in Table 1. The ‘Specific to Generic’ category
contains 8 classes. Samples were created from these classes when they changed into any other category
except itself. For example, a change from ‘Forest’ into ’Cropland’ or ‘Plantations’. Here, we sampled
pixels from any category that changed into a specific one (right column Table 1). Notably, the ‘Urban’
category was not included in the ‘Specific to Generic’ category as these transitions are uncommon.
Similarly, the ‘Mangroves’ category was not included in the ‘Generic to Specific’ category. This is



Remote Sens. 2020, 12, 1472 4 of 17

because knowledge of the physical environment would indicate that these transitions are uncommon
and do not make scientific sense, hence they were not included.

Table 1. The left column shows the ‘Specific to Generic’ category (1–8), these contain transitions from
a specific class to any other. The right column, the ‘Generic to Specific’ category (9–16), includes
transitions from any class into a specific class. Each category contains 8 classes.

Specific to Generic Generic to Specific
from to from to

1 Aquaculture Other 9 Other Aquaculture
2 Barren Other 10 Other Barren
3 Cropland Other 11 Other Cropland
4 Flooded forest Other 12 Other Flooded forest
5 Forest Other 13 Other Forest
6 Mangroves Other 14 Other Plantations
7 Plantations Other 15 Other Wetlands
8 Wetlands Other 16 Other Urban

A data sample for categories of change was created for the 2000–2018 data-series. A random
stratified sample containing 200 points was generated, defined by a specific set of parameters to filter
transition areas so that they have a minimum mapping unit of 0.5 ha and a probability greater than
97.5%. The stratified sample algorithm extracts a stratified random sample for the change areas from
the image. Yearly probabilities from the time-series maps of [13] were used in this study. Similarly,
another sample of 200 points was created for the same category for areas that exhibited no change.
And, from the categories that showed no change, a new stratified sample of 10 points was taken to
account for no change dynamics. For example, if we filtered for areas that transitioned from ‘Forest’
into another category, as well as meeting the criteria defined above, we would produce a sample of
200 points. Subsequently, we would then create another sample of 200 points, where the area was
classified as ‘Forest’ in both years. Finally, we would produce a sample of 10 points for other categories
that had remained static, such as Aquaculture and Cropland. The latter was carried out to ensure
the distribution of points was even and included all categories. A validation sample was created in
the same way, but only including change locations. Figure 2 shows the spatial distribution of the
training and validation data. The top figures show the training data and the bottom images show the
validation points. The figures on the left and right are the two different categories—’specific to generic’
and ‘generic to specific’, respectively.
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Figure 2. Overview of training (top) and validation (bottom) samples used in the study. Images on
the left show data points in the ‘specific to generic’ category, images on the right ‘generic to specific’.
Different colors represent the different classes.

2.3. Modeling

The reference data was used to sample the remote sensing composites and other covariates
for all the respective years. The reference data contained binary information for all 16 change
patterns—change or no change. These were then used as a training sample for a random forest
classifier [17]. Random forest was selected due to its good overall performance [18] especially when
handling a mixture of numerical and categorical data [17]. The GEE random forest algorithm has
six parameters: number of classification trees; number of variables used in each classification tree;
minimum leaf population; bagged fraction of the input variables per decision tree; out-of-bag mode;
and random seed variable for decision tree construction. We used the default setting but changed the
number of trees to 100 in probability mode. Random forest applies majority voting for all its trees for
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class prediction by default. In probability mode the fraction of trees that vote for a certain class are
calculated. This resulted in yearly change probability maps for all 16 classes.

2.3.1. Data Sources

Remote Sensing Composites

Yearly composites were created from the USGS Landsat 4, 5, 7, and 8 surface reflectance products.
This atmospherically corrected and orthorectified data was processed using GEE. Cloud and shadow
identification and removal was carried out using Quality Assessment (QA) bands [19], whilst Landsat 7
data, after the 2003 Scan Line Corrector (SLC) failure, was not included in the analysis. We applied
a custom-developed algorithm for image pre-processing to account for sensor, solar, atmospheric
and topographic effects [20]. Additional shadow and cloud removal was applied [21], together with
a Bidirectional Reflectance Distribution Function (BRDF) [22–26] and topographic correction [27–30].
The medoid [31] values of the composite were exported, as well as the 20th and 80th percentile, with the
latter done to capture the temporal variability in the spectral response. Furthermore, the standard
deviation of all bands, including the standard deviation of the Normalized Difference Water Index (NDWI),
Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVI), were incorporated.

Seasonal composites were created from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Terra MOD09A1 and Aqua MYD09A1 (version 6). This product provides an 8-day estimate of
the surface spectral reflectance of MODIS, satellite-corrected for atmospheric conditions such as gases,
aerosols and Rayleigh scattering [32]. The products contain information for seven spectral bands at a
500-m spatial resolution. Cloud and shadow removal were carried out using the information from the
quality control bands and custom-developed algorithm [21]. Three-monthly composites were created
by calculating the median pixel values. The first non-null value of the same season in the previous
and following year was used to gap-fill areas where no valid observation was available. MODIS was
included in the analysis as persistent cloud cover is one of the main limitations for time-series analysis
using Landsat in this region. A variety of covariates were calculated from Landsat and MODIS remote
sensing composites. Table 2 provides an overview of all the bands and derived indices. All covariates
were calculated for the 20th, medoid and 80th percentile for all Landsat yearly composites and all
seasonal MODIS composites.

Table 2. Landsat and MODIS-derived data products and their covariates. Landsat bands and covariates
were calculated for the medoid, 20th and 80th percentile of a yearly composite. MODIS bands and
covariates were calculated for the periods Jan–Mar, Apr–Jun, Jul–Sep and Oct–Dec. Spatial resolution
of the Landsat and MODIS composites were 30 and 500-meter, respectively.

Name Description Reference

Blue Band Landsat
Nir Band Landsat
Red Band Landsat
Swir1 Band Landsat
Swir2 Band Landsat
Green Band Landsat
EVI Enhanced Vegetation index [33]
IBI Index-based Built-Up Index [34]
ND_blue_green Normalized difference
ND_blue_nir Normalized difference
ND_blue_red Normalized difference
ND_blue_swir1 Normalized difference
ND_blue_swir2 Normalized difference
ND_green_nir Normalized difference [35]
ND_green_red Normalized difference
ND_green_swir1 Normalized difference [36]
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Table 2. Cont.

Name Description Reference

ND_green_swir2 Normalized difference
ND_nir_red Normalized difference [37]
ND_nir_swir1 Normalized difference [38]
ND_nir_swir2 Normalized difference [35]
ND_red_swir1 Normalized difference
ND_red_swir2 Normalized difference
ND_swir1_swir2 Normalized difference
R_red_swir1 Ratio
R_swir1_nir Ratio
SAVI Soil Adjusted Vegetation Index [33]
Brightness Tasseled Cap [39]
Fifth Tasseled Cap [39]
Fourth Tasseled Cap [39]
Greenness Tasseled Cap [39]
Sixth Tasseled Cap [39]
TcAngleBG Tasseled Cap [39]
TcAngleBW Tasseled Cap [39]
TcAngleGW Tasseled Cap [39]
TcDistBG Tasseled Cap [39]
TcDistBW Tasseled Cap [39]
TcDistGW Tasseled Cap [39]
Wetness Tasseled Cap [39]

Another set of single time and time-series data layers were sampled. Table 3 provides an overview
of all the layers. Single data layers include data from OpenStreetMap [40] and associated derivative
products, the Digital Elevation Model [41], Open Cell id and data on administrative boundaries,
ecoregions and protected areas. Time-series data on forest dynamics was provided by the University
of Maryland [42], RLCMS and Worldpop data [43]. Yearly rainfall estimates were also included from
the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) [44].

Table 3. Data layers used in the remote sensing model.

Layer Spatial Resolution (m) Temporal Resolution Description Reference

Distance to building 30 single OSM [40]
Distance to domestic airport 30 single OSM [40]
Distance to international airport 30 single OSM [40]
Distance to power station 30 single OSM [40]
Distance to primary roads 30 single OSM [40]
Distance to secondary roads 30 single OSM [40]
Land cover map 30 yearly RLCMS [13]
Land cover map 300 yearly RLCMS [13]
Land cover map 90 yearly RLCMS [13]
Land cover map 900 yearly RLCMS [13]
Flow Accumulation 30 single SRTM [41]
Aspect 30 single SRTM [41]
Slope direction 30 single SRTM [41]
distance to Stream 30 single srtm [41]
slope orientation 30 single SRTM [41]
Elevation 30 single SRTM [41]
Height Above the Nearest Drainage 30 single SRTM [41]
Slope 30 single SRTM [41]
STRM 30 single SRTM [41]
Forest loss 30 yearly UMD [42]
Primary forests 30 single UMD [42]
Forest rotations 30 single UMD [42]
Tree canopy cover 30 yearly UMD [42]
Tree height 30 yearly UMD [42]
Population density 30 yearly worldpop [43]
Number of births 1000 single Worldpop [43]
Nightlights 300 yearly VIIRS / DMSP-OLS
Distance to coastline 1000 single
Country code 30 single
Eco regions 30 single [45]
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Table 3. Cont.

Layer Spatial Resolution (m) Temporal Resolution Description Reference

Forest ecosystem 30 single WWF
Number of phone towers 30 single OpenCellID https://opencellid.org
protected areas 30 single WDPA https://www.protectedplanet.net
Max extent 30 single JRC [46]
Occurence 30 single JRC [46]
Change abs 30 single JRC [46]
Change norm 30 single JRC [46]
Seasonality 30 single JRC [46]
Recurrence 30 single JRC [46]
Transition 30 single JRC [46]
Max extent 30 single JRC [46]
Water 30 yearly JRC [46]
Precipitation 5000 yearly CHIRPS [44]
Crop rotations 1 500 yearly RLCMS [13]
Crop rotations 2 500 yearly RLCMS [13]
Crop rotations 3 500 yearly RLCMS [13]
Cross correlation 500 yearly RLCMS [13]

Population Density

Population dynamics are an important driver of land cover changes. We used the WorldPop
Project Population Data [43], which contains estimates of population densities with a 100 by 100 m
resolution. Estimates are obtained through machine learning approaches, where census data was
combined with a variety of geospatial covariates [47]. The dataset contains estimates for 2010, 2015
and 2020. We created yearly layers for the period 2000–2020 by applying a linear regression function.

Infrastructure

Infrastructure development is another important driver of land cover change. We obtained
OpenStreetMap Data Extracts (http://download.geofabrik.de/; [40]) and extracted the information on
primary roads, secondary roads, international and domestic airports. We applied a distance function
on the different layers that returned the minimum distance to a feature on a 30 by 30 m resolution.

Forest Data

Yearly fractional tree canopy cover (TCC) and tree canopy height (TCH) was used as covariates in
the model. The 2000–2018 time-series was developed and validated for the Lower Mekong region [42].
The products were derived from summary statistics of annual Landsat surface reflectance products
and global sub-pixel training data [48,49]. Another time-series on tree cover loss was also included.
This data was created from a separate, manually collected training set. We derived additional indices
on primary forest and forest rotations, including both as single layer maps. Primary forest was defined
as pixels with a consistent tree cover above 25%, and the number of forest rotations was calculated
from the number of disturbances. Equation (1) shows the definition of a disturbance.

disturbancet =

{
tcct−1 > 10

tcct = 0
(1)

Surface Water

The JRC Global Surface Water Mapping dataset was used in this study. This data contains maps
with the location and temporal distribution of surface water between 1984 and 2015. It also provides
statistics on the extent and change of those water surfaces [46]. We included the JRC Global Surface Water
Mapping Layers v1.0, which consists of 1 image containing 6 bands with indices on water persistence.
Furthermore, we used the JRC Monthly Water History v1.0 to create yearly surface water maps.

https://opencellid.org
https://www.protectedplanet.net
http://download.geofabrik.de/
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Terrain Data

The DEM was included as a covariate, but it was also used to calculate DEM-derived indices
such as elevation, slope, aspect and deviation from the north and east, each with a 30 by 30-meter
ground resolution. The slope orientation was calculated from the sine and cosine of the aspect,
respectively [50,51]. Furthermore, the DEM was used to create a flow accumulation, distance to stream
and distance to nearest drainage map.

Cross-Correlation and Crop Cycle

Crop cycles were calculated from the MODIS-derived EVI (MOD13Q1 and MYD13Q1) time-series.
We calculated the coefficient of determination (R2) for 1, 2 and 3 cropping cycles. Higher R2 values
indicate a better fit between measured and modeled EVI. These (R2) values were used as covariates.
MODIS-derived EVI and CHIRPS was used to calculate the cross-correlation. Cross-correlation
provides information on vegetation response to rainfall and was calculated from the detrended EVI
time-series and rainfall, using a lag time of 30 days. Details can be found in Saah et al. [13].

Night Light

Night Light data is a commonly used covariate in land cover mapping, especially when mapping
urban areas. In this study we used Version 4 of the DMSP-OLS Nighttime Lights Time Series and the
VIIRS Stray Light Corrected Nighttime Day/Night Band Composites (Version 1). The DMSP-OLS
product contains data from 1996 - 2014, and the VIIRS covers a period from 2014 - present. A power
function (14.758xviirs0.448 [52]) was used to homogenize the times-series of the two different products.

Other Indices

The RLCMS data was added as a covariate on a 30, 90, 300 and 900-m resolution. Resampling was
carried out by applying the mode. Different resolutions were used in the model as majority landcover
in an area can be an important factor in land cover changes. Furthermore, other auxiliary information
on ecoregions, protected areas and distance to coastline were added.

3. Results

The random forest classifier was applied to the training data for the 16 different change patterns (see
Table 1). Figure 3 shows the change probabilities of the training data for change (green) and no change
(red) pixels. The top row shows the ‘Specific to Generic’ and the bottom row shows the ‘Generic to Specific’
transitions. It can be seen that there is a clear separation in probability distributions between the change
and no-change classes. The separation is most pronounced for the ‘Generic to Specific’ (bottom) and least
pronounced for the Barren, Cropland and Plantations classes in the ‘Specific to Generic category’.

Validation was carried out using an independent dataset on change pixels for the period 2000–2018.
We used the change location for each category to sample the probability maps. Figures 4 and 5 show the
probability distribution of pixels that have changed in the past. We found that in the ‘Specific to Generic’
category, Aquaculture had the largest spread and in the ‘Generic to Specific’ category, Barren exhibited
the largest spread. The median values are all greater than 80% and all lower quantiles greater than 70%.
Wetlands and Flooded forests have the highest median and smallest range in both categories, respectively.
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Figure 3. Distributions of the training data samples for ‘Specific to Generic’ (top row) and ‘Generic to
Specific’ (bottom row). The red boxes show change probabilities of pixels that did not change, the green
boxes for the change pixels.
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Figure 4. Distributions of validation change pixels in the ‘Specific to Generic’ category.
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Figure 5. Distributions of validation change pixels in the ‘Generic to Specific’ category.

3.1. Spatial Change Dynamics

The 2018 change probability maps are shown in Figures 6 and 7. The maps in Figure 6 show the
probability of a pixel to change into any category. It can be seen that generally, higher probabilities
were found for Plantations, Cropland and Forest, with lower probabilities for the other classes. Higher
change probabilities for Cropland were found near the coast whereas, high probabilities for Forest
change were found in Cambodia, Myanmar and Lao PDR.
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Figure 6. Probability change maps for ‘Specific to Generic’ category for the different land cover types.
The maps show the probability of a pixel to change into any other category for the year 2018.

Figure 7 shows the change probability for the ‘Generic to Specific’ category. This indicates
the likelihood of a given pixel in any category to change into a specific class. It was found that
anthropogenic land cover types including Plantations, Cropland, Urban, Aquaculture and Barren show
higher probabilities. High change probabilities for Plantations are mostly focused around agricultural
areas. The same case applies for Aquaculture, which shows high probabilities in agricultural areas in
the delta, near the coast. High probabilities for Urban can be found near population centers. Higher
change values are specifically notable in the red river delta in Northern Viet Nam. For Flooded forest
and Wetlands we found high change probabilities around Tonle Sap lake, which is likely caused by the
natural dynamics between these two classes.

Mapping both the ‘Specific to Generic’ and ‘Generic to Specific’ land cover change probabilities
for each class revealed interesting dynamics, as it allowed a comparison of all the layers. For example,
a visual inspection shows us that large areas in Cambodia have high probabilities in the ‘Specific to
Generic’ Forest class and also high probabilities in the ‘Generic to specific’ Cropland class. At the
same time, we can see high probabilities in the ‘Specific to Generic’ class for Cropland, whereas these
areas show also a high probability in the ‘generic to specific’ class for Plantations. This could indicate
that croplands have a greater likelihood to change into plantations. The ‘Generic to Specific’ Barren
map (Figure 7) shows high probabilities for Croplands throughout the region whereas, the ‘Specific
to Generic’ Cropland shows low probabilities for most of these areas. This is most likely caused by
the fact that many croplands have a spectral signature of bare-land for part of the year. Changes
from Cropland into any other class, including Barren, were not frequent in the training data whereas,
changes from any other class to Barren carries a clear spectral signal of bare-land.
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Figure 7. Probability change maps for ‘Generic to specific’ category for the different land cover types.
The maps show the probability of a pixel to change into that specific category for the year 2018.

3.2. Temporal Change Dynamics

The time-series was used to investigate temporal forest dynamics. We sampled the yearly ‘Specific
to Generic’ forest layer using 250,000 random points, while applying a temporal smoothing algorithm
covering a year window. Figure 8 shows the probability density function for the ‘Specific to Generic’ forest
data for the period 2000–2018 for each country. It is interesting to note that Thailand and Lao PDR, but
also Viet Nam to some extent, show bi-modal distributions. The probability density functions of Myanmar
and Cambodia show more similarity to log-normal distributions. All countries show a shift from low
probabilities to higher probabilities. It is notable that the left modes decrease while the rights ones increase.

Figure 8. Densities of probability of changes for the ‘Specific to Generic’ forest data per country for the
period 2000–2018.
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The ‘Specific to Generic’ Forest layer was then combined with the ‘Generic to Specific’ Cropland
layer. We used the fifth percentile of Figures 4 and 5 (62% and 72%) for the ‘Specific to Generic’ Forest
and ‘Generic to Specific’ Cropland data, respectively, to mask the layers. Figure 9 shows the resulting
distributions of the ‘Generic to Specific’ Cropland layer for all pixels with a high ‘Specific to Generic’ Forest
probability (top: green color) as well as the ‘Specific to Generic’ Forest distributions with a high probability
to change into Cropland (bottom: blue color). The different spectrum of colors indicate the different years.

Figure 9. Probability density functions for anthropogenic change. The green charts show the ‘Generic
to Specific’ cropland distributions per country, filtered using the ‘Specific to Generic’ Forest data with a
threshold of 62%. The blue charts show the ‘Specific to Generic’ Forest distribution of the ‘Generic to
Specific’ Cropland layers with a threshold value of 72%.

It was found that the different combinations show different results. The probability density
functions for all countries show a high probability in the ‘Generic to Specific’ Cropland category
for pixels with a high probability in the ‘Specific to Generic’ category. This means that conversion
to Cropland is very likely for all Forests that are under threat of deforestation. On the other hand,
not all pixels that are likely to convert into Cropland are due to deforestation. This is evident in
the bottom graphs of Figure 9 of Viet Nam, for example. The chart shows a bimodal distribution
which indicates that except from Forest to Cropland conversion, there is another driver for cropland
transitions. We found that change from Plantations is another important driver that shows a similar
bimodal distribution for Viet Nam.

4. Discussion

We presented a methodology to map land cover change and its spatial and temporal dynamics.
An interesting finding of this study is the bimodality of the probability density functions. In the context
of a land cover type that needs to be preserved, it would mean that some areas are well protected,
whilst other areas are under serious threat. For example, this could mean that either protection of that
area is quite effective or, that the areas are very remote and therefore, more vulnerable. The shape
and temporal dynamics of the probability functions provide important information for environmental
protection, with a shift towards higher probabilities indicating a greater potential threat and a need for
more effective policies.

In the study we used mostly yearly data as well as single time layers. One of the main limitations
is the lack of yearly infrastructure and census data which is often difficult to obtain and has a coarse
temporal resolution. However, it is important to include this data for this region considering the
rapid economic developments over the last 20 years. Another limitation of the study is the lack of
field validation. Figures 4 and 5 show the probability distributions of an independent set of change
pixels. The results provide reassurance that the model performs well in determining change probability.
However, the independent sample was not verified by field observations. Field data for land cover
change is often difficult to obtain but systems using higher resolution satellite imagery, such as Collect
Earth, [53] offer exciting opportunities to collect new data. The work was conducted under the



Remote Sens. 2020, 12, 1472 14 of 17

auspices of the Mekong River Commission (MRC), who intend to include locations with high change
probabilities in their field data collection protocol. Future work could include further refinement of the
model by incorporating field data for both training and validation purposes.

Conventional models to map land cover change include different components that determine land
cover change pathways such as, the CLUE-S model which contains four components on land demand,
suitability, policies and land use change rules [54]. These components are included implicitly in the
covariates. For example terrain, water and rainfall indices provide information on suitability, whilst
covariates derived from OpenStreetMap and WorldPop provide information on demand, and the layer
on protected areas is important for policies. The change rules are set by machine learning, which
assigns priorities to the different covariates based on historical change patterns, and then estimates
potential future impacts. The method we presented is highly suitable scenario analysis. However, it
should be noted that not all drivers are included in the model and that a high or low probability will
not necessarily lead to land cover change in the future. Cloud-based geo-computation platforms enable
on-the-fly exploration of the data and different scenarios as demonstrated by Poortinga et al. [55],
Markert et al. [56]. For example, potential impacts of road construction can be studied by simply
changing the covariate on distance to road and then running the model.

5. Conclusions

This study has developed a novel means to simulate and analyze land cover dynamics using
EO, ground data and machine learning. Our machine learning-based approach is governed only by
historical drivers of change, demonstrated by utilizing the land cover time-series maps generated by
RLCMS for the Mekong region. We calculated the probability of the following classes: Aquaculture;
Barren; Cropland; Flooded Forest; Forest; Mangroves; and Plantations, to change into any other
‘generic’ class. Additionally, we calculated the probability of any other ‘generic’ class to change into
Aquaculture, Barren, Cropland, Flooded Forest, Forest, Plantations, Wetlands and Urban. It was
found that historical change pixels all exhibit mean change probabilities greater than 80%, along
with lower quantiles, except one, being greater than 70%. The highest change probabilities in the
‘Specific to Generic’ category were the Cropland and Forest classes. Whereas, for the ‘Generic to
Specific’ category, the classes with the highest change probabilities were Plantations, Cropland, Urban
and Aquaculture. We sampled layers based on administrative boundaries and showed that the
associated probability distributions provide important information on temporal change dynamics.
This research successfully illustrates that machine learning, combined with single time and time-series
data layers including EO, can be used to identify potential land cover change hotspots and land cover
change trajectories—information that is important for sustainable decision-making regarding land-use
planning and management. Whilst the focus for this study was the Mekong region, our approach in
principle can be up-scaled and applied on a planetary scale, beneficial for a wide range of stakeholders
from land planners to policy makers.
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